
 - 1 -

 The Storage Resource Manager Interface Specification
Version 2.1

This version prepared by:

Junmin Gu, Alex Sim, Arie Shoshani
LBNL

THIS IS A WORK IN PROGRESS DRAFT

It reflects decisions discussed in
http://sdm.lbl.gov/srm-wg/doc/SRM.v2.1.joint.func.design.ver0.doc

Introduction

This document contains the interface specification of SRM 2.1. It incorporates the
functionality of SRM 2.0 (see “srm.methods.v2.0.rev2.doc” posted at
http://sdm.lbl.gov/srm), but is much expanded to include additional functionality,
especially in the area of dynamic storage space reservation and directory functionality in
client-acquired storage spaces.

This document reflects the discussions and conclusions of a 2-day meeting whose
purpose was to further define the functionality and standardize the interface of Storage
Resource Managers (SRMs) – a Grid middleware component. The meeting took place at
CERN on December 4-5, 2002. This document is a follow up to the basic SRM design
consideration document that describes the basic functionality of SRM Version 2.0 (see
“SRM.v2.0.joint.func.design.rev2.doc” posted at http://sdm.lbl.gov/srm). The
participants at the meeting are listed below.

Participants:

EDG-WP2: Peter Kunszt, Heinz Stockinger, Kurt Stockinger, Erwin Laure
EDG-WP5: Jean-Philippe Baud, Stefano Occhetti, Jens Jensen, Emil Knezo, Owen Synge
JLAB: Bryan Hess, Andy Kowalski
FermiLab: Don Petravick, Timur Perelmutov
LBNL: Arie Shoshani, Alex Sim
Other contributors not at the meeting: Chip Watson (Jlab), Rich Wellner (FermiLab),
Junmin Gu (LBNL)

The document is organized in four sections. The first, called “Defined Structures”
contain all the type definitions used to define the functions (or methods). The next 3
sections contain the specification of “Space Management Functions”, “Directory
Functions”, and “Data Transfer Functions”. All the “Space Management Functions”,
“Directory Functions” are newly added functions, and “Data Transfer Functions” are
slightly modified versions of the SRM V2.0 specification.

 - 2 -

It is advisable to read the document SRM.v2.1.joint.func.design.doc posted at
http://sdm.lbl.gov/srm before reading this specification, since the reasoning for the
decisions reflected in this specification are described there in detail.

Meaning of terms:

• By “https” we mean http: protocol with GSI authentication. At this time, any
implementation of http with GSI authentication could be used. It is advisable that
the implementation is compatible with Globus release GT3.0 or future versions.

• Volatile space is owned by SRM. All users have read-only permission. This

permits file sharing of files in volatile space.

• Primitive types used below are consistent with XML build- in schema types: i.e.

o long is 64bit: (+/-)9223372036854775807
o int is 32 bit: (+/-)2147483647
o short is 16 bit: (+/-)32767
o unsignedLong ranges (inclusive):0 to18446744073709551615
o unsignedInt ranges (inclusive): 0 to 4294967295
o unsignedShort ranges (inclusive): 0 to 65535

Method of getting the SRM’s WSDL:

The SOAP endpoint can be specified as part of the WSDL, since WSDL is extensible to
allow the description of endpoints. Until we can rely on Web Service Discovery tools,
we will follow the following standard:

• The general standard for the location of the WSDL is of the form:
https://host:port/srm/version/srm.wsdl, where host and port is different for each
SRM. The host:port is taken from the SURL.

• The following is the standard for the current version:
https://host:port/srm/2.1/srm.wsdl, where only host:port is different for each
SRM. For example: if the SURL is: srm://dm.lbl.gov:4003/myspace/myfile1,
then the WSDL for the SRM is on https://dm.lbl.gov:4003/srm/2.1/srm.wsdl.

• In the WSDL file, one can have the SRM SOAP endpoint specified into a
different host:port. For example, the soap endpoint in the WSDL file could be
https://dataportal.lbl.gov:5000.

• Given the SURL above, When the client connects to the SRM at
https://dataportal.lbl.gov:5000, it will pass the string /myspace/myfile1 to the
SRM as an argument for the methods that need it.

 - 3 -

Namespace SRM:

Notation: underlined attributes are required.

Defined Structures:

enum TSpaceType {Volatile, Durable, Permanent}
enum TFileType {Volatile, Durable, Permanent}

enum TPermissionType {None, X, W, WX, R, RX, RW, RWX}
enum TRequestType {PrepareToGet, PrepareToPut, Copy}
enum TOverwriteMode {Never, Always, WhenFileSizeDoesNotMatch}

typedef string TRequestToken
typedef string TUserID
typedef string TOwner

typedef string TCheckSumType
typedef unsigned long TCheckSumValue

typedef unsigned long TSizeInMB
typedef unsigned long TSizeInBytes

typedef string TGMTTime

// format is same as in XML dateTime type:
// e.g. 1999-05-31T13:20:00
// (for 1999 May 31st, 13:20PM)

typedef unsigned long TTimeDurationInSeconds

typedef struct {string dir,
 string name,
 TSizeInBytes size,
 TPermissionType yourPermission,
 TGMTTime createdAtTime,
 TGMTTime lastModificationTime,
 TOwner owner,
 TFileType typeOfThisFile,
 TTimeDurationInSeconds durationAssigned,
 TTimeDurationInSeconds durationLeft,
 TCheckSumType checkSumType,
 TCheckSumValue checkSumValue,

TSURL originalSURL // if path is a file
} TMetaDataPathDetail

 - 4 -

typedef struct {TSpaceType typeOfThisSpace,

TOwner owner,
 TSizeInMB totalSizeOfThisSpace,
 TSizeInMB sizeOfUnusedSpace,
 TSizeInMB sizeOfUsedSpace,
 TTimeDurationInSeconds durationAssigned,
 TTimeDurationInSeconds durationLeft} TMetaDataSpace

typedef string TStorageSystemInfo

typedef string TSURL // site URL
typedef string TTURL // transfer URL

typedef struct {TSURL SURLOrStFN,

TStorageSystemInfo storageSystemIDandAuth} TSURLInfo

typedef struct {TSURLInfo fromSURLInfo
 TSURLInfo toSURLInfo
 string globalFileName
 TTimeDurationInSeconds lifetime // pin time
 TFileType fileType
 TSizeInBytes knownSizeOfThisFile,

TSizeInMB maxFileLength} TGetFileRequest

typedef struct {TSURLInfo toSURLInfo
 string globalFileName
 TTimeDurationInSeconds lifetime // pin time
 TFileType fileType
 TSizeInBytes knownSizeOfThisFile,

TSizeInMB maxFileLength} TPutFileRequest

typedef struct {TSURLInfo fromSURLInfo
 TSURLInfo toSURLInfo
 string globalFileName
 TTimeDurationInSeconds lifetime // pin time
 TFileType fileType
 TSizeInBytes knownSizeOfThisFile,

TSizeInMB maxFileLength} TCopyFileRequest

// In TGetFileRequest, TPutFileRequest, TcopyFileRequest:
// the default value of “lifetime”:
// for Volatile or Durable files will be the lifetime left in the space
// of the corresponding file type.
// the default value of “fileType” is Volatile.

 - 5 -

typedef struct {unsigned int statusCode,
 string explanation} TReturnStatus

// convention of the statusCode: format: 5 digits: x-xx-xx, where x are 0-9:
// first digit: 1= SRM common, for other SRM specific codes, use 2 to 9.
// the next two digits are function specific
// the last two digits are reserved for status code
// SRM common codes are defined at the end of this document.
// for example, srmReleaseSpace() has its return codes 10201, 10202, 10203, 10204

typedef struct {string path,
 TReturnStatus status } TPathReturnStatus

typedef struct {TSURL surl,
 TReturnStatus status } TSURLReturnStatus

typedef struct {TSURL siteURL,
 TsizeInBytes fileSize,
 TReturnStatus status,
 TTimeDurationInSeconds estimatedWaittingTimeOnQueue,

TTimeDurationInSeconds estimatedProcessingTime,
TTURL transferURLFromSRM
TTimeDurationInSeconds remainingPinTimeIfAny

} TFileRequestStatus

typedef struct {TRequestToken requestToken,
 TRequestType requestType,
 int totalFilesInThisRequest,
 int numOfQueuedRequests,
 int numOfFinishedRequests,
 int numOfProgressingRequests,
 Boolean isSuspened} TRequestSummary

typedef struct {TSURL surl,
 TReturnStatus status,
 TPermissionType userPermission

} TCheckPermissionReturnStatus

typedef struct {TRequestToken requestToken,
 TGMTTime createdAtTime

} TGetRequestIDReturnStatus

notes:

• UserID is not needed when we use gsi.

 - 6 -

• StorageSystemInfo is a string that contains the login and password required by
the storage system. For example, it might have the form of login:pwd@hostname,
where “:” is a reserved separator between login and pwd. If hostname is not
provided, it is defaulted to what’s in the accompanying site URL or the host of
SRM.

• TMetaDataSpace can refer to a single space of each type (i.e. volatile, durable,
permanent). It does not include the extra space needed to hold the directory
structures.

• Regarding files in Volatile space: Any file in Volatile space is owned by the SRM,
but the requester(s) have read permission to it. If another user requests this file,
he needs to provide a source siteURL so SRM can check from the source site
whether the user has a read/write permission. If permission is granted, then the
SRM updates its permission list to include this caller and returns the file in
Volatile space instead getting the file from the source site.

• GlobalFileName is not a required attribute.
• The type definition SURL above is used for both site URL and the “Storage File

Name” (stFN). This was done in order to simplify the notation. Recall that stFN
is the file path/name of the intended storage location when a file is put (or copied)
into an SRM controlled space. Thus, a stFN can be thought of a special case of
an SURL, where the protocol is assumed to be “srm” and the machine:port is
assumed to be local to the SRM. For example, when the request srmCopy is
made, the source file is specified by a site URL, and the target location can be
optionally specified as a stFN. By considering the stFN a special case of an
SURL, an srmCopy takes SURLs as both the source and target parameters.

• The requestToken assigned by SRM is unique and immutable (non-reusable). For
example, if the date:time is part of the requestToken it will be immutable.

Function specification:

Space Management Functions:

summary:
 srmReserveSpace
 srmReleaseSpace
 srmUpdateSpace(includes size and time)

srmCompactSpace:

srmGetSpaceMetaData:

srmChangeFileType:

details:
srmReserveSpace:

 - 7 -

 In: TUserID userID,
TSpaceType typeOfSpaceToReserve,
TSizeInMB sizeOfSpaceToReserve,
TTimeDurationInSeconds lifetimeOfSpaceToReserve,
TStorageSystemInfo storageSystemInfo

 Out: TSpaceType typeOfReservedSpace,
TSizeInMB sizeOfReservedSpace,
TTimeDurationInSeconds lifetimeOfReservedSpace,
TReturnStatus returnStatus

 notes:
• lifetimeOfSpaceToReserve is not needed if requesting permanent space.
• SRM can provide default size and duration if not supplied.
• storageSystemInfo is optional in case storage system requires additional security

check.

srmReleaseSpace:
 In: TUserID userID,

TSpaceType typeOfSpace,
TStorageSystemInfo storageSystemInfo,

 Boolean forceFileRelease

Out: TReturnStatus returnStatus

notes:

• forceFileRelease=false is default. This means that the space will not be released
if it has files that are still pinned in the space. To release the space regardless of
the files it contains and their status forceFileRelease=true must be specified.

• To be safe, a request to release a reserved space that has an on-going file transfer
will return false, even forceFileRelease= true.

• When space is releasable and forceFileRelease=true, all the files in the space are
released, even in durable or permanent space.

• It is up to each SRM whether a released space will result in removing all its
files/directories immediately. One possibility is to keep files/directories in volatile
space when the Durable or Permanent spaces are released.

srmUpdateSpace(includes size and time)
 In: TUserID userID,

TSpaceType designatedSpaceType,
TStorageSystemInfo storageSystemInfo,

 TSizeInMB newSize,
 TTimeDurationInSeconds newDurationFromCallingTime

 Out: TSizeInMB actualSizeGranted,

 - 8 -

 TTimeDurationInSeconds actualDurationGranted,
TReturnStatus returnStatus

notes:
• If neither size or duration are supplied in the input, then return will be null.
• newSize is the new actual size of the space, so has to be positive.
• newDurationFromCallingTime is the new lifetime requested regardless of the

previous lifetime, and has to be positive. It might even be shorter than the
remaining lifetime at the time of the call.

srmCompactSpace:
 In: TUserID userID,

TSpaceType typeOfSpace,
TStorageSystemInfo storageSystemInfo,

 Boolean doDynamicCompactFromNowOn

Out: TSizeInMB newSizeOfThisSpace
notes:

• This function is called to reclaim the space for all released files and update space
size in Durable and Permanent spaces. Files not released are not going to be
removed (even if lifetime expired.) Directory structure will stay intact.

• doDynamicCompactFromNowOn=false by default, which implies that only a one
time compactSpace will take place.

• If doDynamicCompactFromNowOn=true, then the space of released files will be
automatically compacted until the value of doDynamicCompactFromNowOn is
set to false.

• When space is compacted, the files in that space do not have to be removed by the
SRM. For example, the SRM can choose to move them to volatile space. The
client will only perceive that the compacted space is now available to them.

• To physically force a removal of a file, the client should use srmRm.

srmGetSpaceMetaData:
 In: TUserID userID,

TSpaceType[] arrayOfTypeOfSpace

 Out: TMetaDataSpace[] arrayOfSpaceDetails
notes:

• If no typeOfSpace is given, return ALL caller spaces under each of the types.

srmChangeFileType: (applies to both dir and file)
 In: TUserID userID,

TSURLInfo[] arrayOfPath,
 TFileType desiredType

 - 9 -

 Out: TPathReturnStatus[] returnStatus

notes:

• Either path must be supplied.
• If a path is pointing to a directory, then the effect is recursive for all the files in

this directory.
• Space allocation and deallocation maybe involved.

Directory Functions:

summary:
srmMkdir:
srmRmdir: (applies to dir)
srmRm: (applies to file)
srmLs: (applies to both dir and file)
srmMv: (applies to both dir and file)
srmCp: (applies to both dir and file)
srmReassignToUser:
srmAddPermission:
srmRmPermission:

details:

srmMkdir:
 In: TUserID userID,
 string topDirectory,
 string newDirectoryPath,

TStorageSystemInfo storageSystemInfo

Out: TReturnStatus returnStatus

notes:

• The topDirectory refers to the user’s top directory. If omitted, the user’s top
directory is assumed.

• Consistent with unix, recursive creation of directories is not supported.
• newDiretoryPath can include paths, as long as all sub directories exist.

srmRmdir: (applies to dir)
 In: TUserID userID,
TSURLInfo dirToBeDeleted,
 boolean doRecursiveRemove

Out: TReturnStatus returnStatus

 - 10 -

notes:

• doRecursiveRemove is false by default.
• To distinguish from srmRm(), this function is for directories only.
• We use “~” to refer to the top directory of this user in that space.

srmRm: (applies to files)
 In: TUserID userID,
TSURLInfo[] arrayOfFilePathsToBeDeleted

 Out: TPathReturnStatus[] arrayOfDeletedSuccessfully
notes:

• To distinguish from srmRmDir(), this function applies to files only.

srmLs: (applies to both dir and file)
 In: TUserID userID,

TSURLInfo[] pathToBeListed,
 TFileType fileTypeToBeListed,
 boolean fullDetailedList,

boolean allLevelRecursive,
int numOfLevels

 Out: TMetaDataPathDetail[] details
notes:

• fullDetailedList=false by default.
• If fullDetailedList=true provide full details similar to unix “ls –l”.
• If allLevelRecursive=true then file lists of all level below current will be provided

as well.
• numOfLevels is dominant over allLevelRecursive. By default, numOfLevels=1.

srmMv: (applies to both dir and file)
 In: TUserID userID,

TSURLInfo pathToBeMovedFrom,
 TSURLInfo pathToBeMovedTo

Out: TReturnStatus returnStatus

notes:
• Space allocation and de-allocation may be involved if moving from one type of

space to another.
• Both paths here are assumed to be owned by the same user.

srmCp: (applies to both dir and file)
 In: TUserID toUserID,

 - 11 -

TSURLInfo toStFNInfo,
TSURLInfo fromStFNInfo,
TFileType fileTypeToBeAssigned,
Boolean copyRecursively // default = false

Out: TReturnStatus returnStatus

notes:

• The toUserID must be the ID of the user making the srmCp call.
• Space allocation may be involved at the destination side.
• Permission checking is required if different users are involved.
• If copying directories, then all files involved will be assigned to

“fileTypeToBeAssigned” if it is given. By default, a copied file has the same type
as the original file.

srmAddPermission: (applies to both dir and file)
 In: TUserID userID,
TSURLInfo pathTargeted,

TPermissionType newPermission,
String anotherUser

Out: TReturnStatus returnStatus

notes:

• If anotherUser = “*”, it means world permission.
• AnotherUser depends on the security model of the SRM. For example, If gsi is

used, the “distinguished name” may be used.

srmRmPermission: (applies to both dir and file)
 In: TUserID userID,
TSURLInfo pathTargeted,

TPermissionType permissionToBeRemoved,
String anotherUser

Out: TReturnStatus returnStatus

notes:

• If anotherUser = “*”, it means world permission.
• AnotherUser depends on the security model of the SRM. For example, If gsi is

used, the “distinguished name” may be used.

srmReassignToUser:
 In: TUserID userID,

string assignedUser,
 TTimeDurationInSeconds lifeTimeOfThisAssignment,

 - 12 -

 TSURLInfo designatedPathFromOwner // file or dir

 Out: TReturnStatus returnStatus

notes:

• After lifeTimeOfThisAssignment time period, or when assignedUser obtained a
copy of files through srmCp(), the files involved are released and space is
compacted automatically, which ever is first.

• This function implies actual lifetime of file/space involved is extended up to the
lifeTimeOfThisAssignment.

• The caller must be the owner of the files to be reassigned.
• permission is omitted because it has to be READ permission.
• lifeTimeOfThisAssignment is relative to the calling time. So it must be positive.
• If the path here is a directory, then all the files under it are included recursively.
• If there are any files involved that are released before this function call, then

these files will not be involved in reassignment, even if they are still in the space.
• If a compact() is called before this function is complete, then this function has

priority over compact(). Compact will be done automatically as soon as files are
copies to the assignedUser. Whether to dynamically compact or not is an
implementation choice.

Data Transfer Functions:

summary:

srmPrepareToGet:
srmPrepareToPut:
srmCopy:

srmReleaseFiles: (dir is ok. Will release recursively for dirs)
srmRemoveFiles:
srmPutDone:

srmAbortRequest:
srmAbortFiles:
srmSuspendRequest:
srmResumeRequest:

srmGetRequestStatus:
srmGetFilesStatus:
srmGetRequestSummary:

srmExtendFileLifeTime:
srmGetRequestID:

srmCheckPermission:

 - 13 -

details:

srmPrepareToGet:
 In: TUserID userID,

TGetFileRequest[] arrayOfFileRequest,
 string[] arrayOfTransferProtocols,
 string callbackReference,
 string userRequestDescription,
 TTimeDurationInSeconds retryTime

 Out: TRequestToken requestToken,
 TFileRequestStatus[] arrayOfFileStatus
notes:

• The userRequestDescription is a user designated name for the request. It can be
used in the getRequestID method to get back the system assigned request ID.

• If callbackReference is provided then callback will be performed.
• Only pull mode is supported.
• SRM rejects the file request if stFN (“toSURLInfo” in the TGetFileRequest) is not

local.
• If stFN is not specified, SRM will generate a name automatically and put it in the

specified user space. This will be returned as part of the “transfer URL”.
• SRM assigns the requestToken at this time.
• Normally this call will be followed by srmRelease().
• “retryTime” means: if all the file transfer for this request are complete, then try

previously failed transfers for a total time period of “retryTime”.
• In case that the retries fail, the return should include an explanation of why the

retries failed and when the tries took place.

srmPrepareToPut:
 In: TUserID userID,

TPutFileRequest[] arrayOfFileRequest,
 string[] arrayOfTransferProtocols,

string callbackReference,
string userRequestDescription,

 TOverwriteMode overwriteOption,
 TTimeDurationInSeconds retryTime

 Out: TRequestToken requestToken,
 TFileRequestStatus[] arrayOfFileStatus
notes:

• If callbackReference is provided then callback will be performed.
• Only push mode is supported for srmPrepareToPut.
• StFN (“toSURLInfo” in the TPutFileRequest) has to be local. If stFN is not

specified, SRM will name it automatically and put it in the specified user space.
This will be returned as part of the “transfer URL”.

• srmPutDone() is expected after each file is “put” into the allocated space.

 - 14 -

• The lifetime of the file starts as soon as SRM get the srmPutDone(). If
srmPutDone() is not provided then the files in that space are subject to removal
when the space lifetime expires.

• “retryTime” is meaningful here only when the file destination is not a local disk,
such as tape or MSS.

• In case that the retries fail, the return should include an explanation of why the
retires failed and when the tries took place.

srmCopy:
 In: TUserID userID,

TCopyFileRequest[] arrayOfFileRequest,
 string callbackReference,
 string userRequestDescription,
 TOverwriteMode overwriteOption,
 Boolean removeSourceFiles (default = false),
 TTimeDurationInSeconds retryTime

 Out: TRequestToken requestToken,
 TFileRequestStatus[] arrayOfFileStatus
notes:

• If callbackReference is provided then callback will be performed.
• Pull mode: copy from remote location to SRM. (e.g. from remote to MSS.)
• Push mode: copy from SRM to remote location.
• Always release files from source after copy is done.
• When removeSourceFiles=true, then SRM will remove the source files on behalf

of the caller after copy is done.
• In pull mode, send srmRelease() to remote location when transfer is done.
• If in push mode, then after transfer is done, notify the caller. User can then

release the file. If user releases a file being copied to another location before it is
done, then refuse to release.

• Note there is no protocol negotiation for this request.
• “retryTime” means: if all the file transfer for this request are complete, then try

previously failed transfers for a total time period of “retryTime”.
• In case that the retries fail, the return should include an explanation of why the

retires failed and when the tries took place.

srmRemoveFiles:
 In: TRequestToken requestToken,
 TUserID userID,
 TSURL[] siteURLs

 Out: TSURLReturnStatus[] arrayOfReturnStatus
notes:

 - 15 -

• If requestToken is not provided, then the SRM will do nothing.
• It has the effect of a release before the file is removed.
• If file is not in cache, do nothing

srmReleaseFiles:
 In: TRequestToken requestToken,
 TUserID userID,
 TSURL[] siteURLs

 Out: TSURLReturnStatus[] arrayOfReturnStatus

notes:

• If requestToken is not provided, then the SRM will release all the files specified
by the siteURLs owned by this user, regardless of the requestToken.

• If requestToken is not provided, then userID is needed. It may be inferred or
provide in the call.

• Releasing files will be followed by compacting space, if
doDynamicCompactFromNowOn was set to true in a previous srmCompactSpace
call.

srmPutDone:
 In: TRequestToken requestToken,
 TUserID userID,
 TSURL[] arrayOfSiteURL

 Out: TSURLReturnStatus[] arrayOfReturnStatus

notes:

• Called by user after srmPut()

srmAbortRequest:
 In: TRequestToken requestToken,
 TUserID userID

 Out: TReturnRequest returnStatus
notes:

• Terminate all file requests in this request regardless of the state. Expired files are
released.

srmAbortFiles
 In: TRequestToken requestToken,
 TSURL[] arrayOfSiteURLs,
 TUserID userID

 - 16 -

 Out: TSURLReturnStatus[] arrayOfReturnStatus

notes://

srmSuspendRequest:

In: TRequestToken requestToken
 TUserID userID

Out: TReturnStatus returnStatus

notes://

srmResumeRequest:

In: TRequestToken requestToken,
 TUserID userID

Out: TReturnStatus returnStatus

notes://

srmGetRequestStatus:
 In: TRequestToken requestToken,
 TUserID userID

 Out: TFileRequestStatus[] arrayOfFileStatus
notes:

• Returns status for all the file requests in this request.

srmGetFilesStatus:
 In: TRequestToken requestToken,
 TSURL[] arrayOfSURLOrStFNs,
 TUserID userID

 Out: TFileRequestStatus[] arrayOfFileStatus
notes:

• For put requests, the toSURLInfos are checked, otherwise, source fromSURLInfos
are checked.

srmGetRequestSummary:
 In: TRequestToken[] arrayOfRequestToken,
 TUserID userID

 Out: TRequestSummary[] arrayOfRequestSummary

srmExtendFileLifeTime:

 - 17 -

 In: TRequestToken requestToken,
 TSURL siteURL,
 TUserID userID,
 TTimeDurationInSeconds newLifeTimeRequestedFromCallingTime

 Out: TReturnStatus returnStatus,
 TTimeDurationInSeconds newTimeExtended
notes:

• newLifeTime is relative to the calling time. Lifetime will be set from the calling
time for the specified period.

• The number of lifetime extensions maybe limited by SRM according to its policies.
• IsExtended = false if SRM refuse to do it. (set newTimeExtended = 0 in this case.)
• If original lifetime is longer than the requested one, then the requested one will be

assigned.
• If newLifeTime is not specified, the SRM can use its default to assign the

newLifeTime.

srmGetRequestID:
 In: string userRequestDescription,
 TUserID userID

Out: TGetRequestIDReturnStatus[] arrayOfPossibleRequestToken
notes:

• If userRequestDescription is null, returns all requests this user has.
• If the user assigned the same name to multiple requests, he may get back multiple

request IDs each with the time the request was made.

srmCheckPermission:
 In: TSURLInfo[] arrayOfSiteURL
 TUserID userID,
 Boolean checkInLocalCacheOnly // default: false

 Out: TCheckPermissionReturnStatus[] arrayOfResults
notes:

• When checkInLocalCacheOnly=true, then SRM will only check files in its local
cache. Otherwise, if a file is not in its local cache, then SRM will go to the
siteURL to check the user permission.

• If checkInLocalCacheOnly = false, SRM can choose to always check the siteURL
for user permission of each file. It is also ok if SRM choose to check its local
cache first, if a file exists and the user has permission, return that permission.
Otherwise, check the siteURL and return permission.

StatusCode specification:

 - 18 -

Note: More status codes will be added as we collect other useful codes that should be in
common to all SRMs. For example, we may want to provide more codes for the reasons
that the space reservation failed, such as UNAUTHORIZED_USER,
UNPRIVILEDGED_USER, NO_MORE_SPACE, etc…, or it may be sufficient to have
such reasons given in the “explanation” string as part of TReturnStatus.

Function code Function Name code

01. srmReserveSpace
#define SPACE_RESERVED 10101
#define SPACE_PARTIALLY_RESERVED 10102
#define SPACE_RESERVE_FAILED 10103

02. srmReleaseSpace
#define SPACE_RELEASED 10201
#define SPACE_ALREADY_RELEASED 10202
#define SPACE_DOES_NOT_EXIST 10203
#define SPACE_NOT_RELEASED 10204

03. srmUpdateSpace
#define SPACE_UPDATED 10301
#define SPACE_PARTIALLY_UPDATED 10302
#define SPACE_DOES_NOT_EXIST 10303
#define SPACE_UPDATE_FAILED 10304

04. srmCompactSpace:
// none

05. srmGetSpaceMetaData:
// none

06. srmChangeFileType:
#define FILETYPE_CHANGED 10601
#define FILETYPE_NOT_CHANGED 10602

07. srmMkdir:
#define MKDIR_SUCC 10701
#define NO_PERMISSION 10702
#define MKDIR_FAILED 10703

08. srmRmdir:
#define RMDIR_SUCC 10801
#define NO_PERMISSION 10802
#define DIR_DOES_NOT_EXIST 10803
#define RMDIR_FAILED 10804

09. srmRm:
#define FILE_DELETED 10901
#define FILE_DOES_NOT_EXIST 10902
#define NO_PERMISSION 10903
#define FILE_DELETE_FAILED 10904

10. srmLs:
// none

 - 19 -

11. srmMv:
#define MV_SUCC 11101
#define NO_PERMISSION 11102
#define PATH_DOES_NOT_EXIST 11103
#define MV_FAILED 11104

12. srmCp:
#define CP_SUCC 11201
#define PATH_DOES_NOT_EXIST 11202
#define NO_PERMISSION 11203
#define NOT_ENOUGH_SPACE 11204
#define CP_FAILED 11205

13. //srmCd:
// none

14. //srmPwd:
// none

15. srmReassignToUser:
#define REQUEST_ACCEPTED 11501
#define NO_PERMISSION 11502
#define USER_DOES_NOT_EXIST 11503
#define PATH_DOES_NOT_EXIST 11504
#define REQUEST_FAILED 11505

16. srmAddPermission:
#define ADD_PERMISSION_OK 11601
#define PATH_DOES_NOT_EXIST 11602
#define PERMISSION_EXISTS 11603
#define ADD_PERMISSION_FAILED 11604

17. srmRmPermission:
#define RM_PERMISSION_OK 11701
#define PATH_DOES_NOT_EXIST 11702
#define PERMISSION_DOESNOT_EXIST 11703
#define RM_PERMISSION_FAILED 11704

18. srmPrepareToGet:
#define GET_REQUEST_QUEUED 11801
#define GET_REQUEST_PROCESSED 11802
#define GET_REQUEST_SUSPENDED 11803
#define GET_REQUEST_ABORTED 11804
#define GET_REQUEST_DONE 11805
#define GET_REQUEST_RELEASED 11806
#define GET_REQUEST_PINNED 11807

 #define GET_REQUEST_PIN_EXPIRED 11808
#define GET_REQUEST_FAILED 11809

19. srmPrepareToPut:
#define PUT_REQUEST_QUEUED 11901
#define PUT_REQUEST_PROCESSED 11902
#define PUT_REQUEST_SUSPENDED 11903
#define PUT_REQUEST_ABORTED 11904

 - 20 -

#define PUT_REQUEST_DONE 11905
#define PUT_REQUEST_RELEASED 11906

 #define SPACE_ALLOCATED 11907
 #define PUT_REQUEST_PINNED 11908

#define GET_REQUEST_PIN_EXPIRED 11909
#define PUT_REQUEST_FAILED 11910

20. srmCopy:
#define COPY_REQUEST_QUEUED 12001
#define COPY_REQUEST_PROCESSED 12002
#define COPY_REQUEST_SUSPENDED 12003
#define COPY_REQUEST_ABORTED 12004
#define COPY_REQUEST_DONE 12005
#define COPY_REQUEST_RELEASED 12006
#define COPY_REQUEST_FAILED 12007

21. srmReleaseFiles:
#define FILE_RELEASED 12101
#define FILE_DOES_NOT_EXIST 12102
#define INVALID_REQUESTTOKEN 12203
#define FILE_RELEASE_FAILED 12204

22. srmPutDone:
#define PUTDONE_OK 12201
#define INVALID_REQUESTTOKEN 12202
#define FILE_DOES_NOT_EXIST 12203
#define PUTDONE_FAILED 12204

23. srmAbortRequest:
#define ABORTED_REQUEST 12301
#define INVALID_REQUESTOKEN 12302
#define REQUEST_ALREADY_DONE 12303
#define ABORT_REQUEST_FAILED 12304

24. srmAbortFiles:
#define ABORTED_FILE 12401
#define INVALID_REQUESTOKEN 12402
#define FILE_DOES_NOT_EXIST 12403
#define FILE_ALREADY_DONE 12404
#define ABORT_FILE_FAILED 12405

25. srmSuspendRequest:
#define SUSPENDED 12501
#define ALREADY_SUSPENDED 12502
#define INVALID_REQUEST_TOKEN 12503
#define REQUEST_ALREADY_FINISHED 12504
#define SUSPEND_FAILED 12505

26. srmResumeRequest:
#define RESUMED 12601
#define ALREADY_RESUMED 12602
#define INVALID_REQUEST_TOKEN 12603
#define REQUEST_ALREADY_FINISHED 12604

 - 21 -

#define RESUME_FAILED 12605
27. srmGetRequestStatus

// none
28. srmGetFilesStatus:

// none
29. srmGetRequestSummary:

// none
30. srmExtendFileLifeTime:

#define EXTENDED 13001
#define INVALID_REQUESTOKEN 13002
#define FILE_DOES_NOT_EXIST 13003
#define LIMIT_REACHED 13004
#define EXTEND_FAILED 13005

31. srmGetRequestID:
// none

32. srmCheckPermission:
#define FILE_DOES_NOT_EXIST 13201
#define FILE_EXISTS_LOCALLY 13202
#define FILE_EXISTS_AT_SOURCE 13203

33. srmRemoveFiles:
#define FILE_DOES_NOT_EXIST 13301
#define FILE_REMOVED 13302
#define NO_PERMISSION 13303
#define FILE_REMOVE_FAILED 13304

